Coulton Instrumentation

Data Sheet =

FEATURES

- * Six sizes of interchangeable orifice section
- * Measurement of very low flow rates, liquid or gas
- * Simple and precise installation using 2 oval flanges
- * Direct mounting onto DP transmitter
- * Body machined from single-piece stainless steel
- * Coulton slip-ring locates orifice section without bolting
- * Accuracy better than $\pm 2\%$ with flow calibration
- * Ex-stock delivery

SCOPE

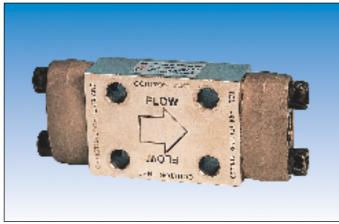
Coulton Instrumentation will supply the integral orifice assembly for fitting to the Customers own transmitter or a complete system fully calibrated and ready for direct installation into the pipeline.

Devices that may be fitted directly to the integral orifice assembly include dp switches, dp indicators and dp transmitters. 3-valve manifolds may be used with these devices to set zero and enable removal while the line is under pressure.

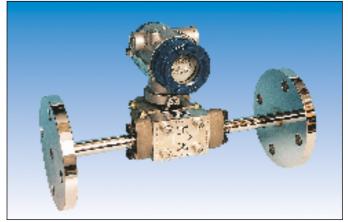
The dp transmitter can be supplied with square root extraction, analogue or digital indicator, HART communication, Exi, ExN or Exd hazardous area certification and/or NACE specification. Please refer to the manufacturers data sheet.

For mass flow, pressure and temperature transmitters can be built into a metered run and supplied complete with a mass flow computer.

One instruction manual is supplied with each shipment. A full set of drawings and certificates can also be supplied. For a description of what is available please refer to the back page.


SPECIFICATION

The standard unit is supplied to the following specification. For different materials, threads and options please refer to the "Details Required" section on the back page, or the detailed engineering drawing.


Fluid:

Process Pressure:VacuProcess Temperature:-40 tAmbient Temperature:DepeBody & Wetted Parts:316 tOval Flange:316 tBolts:Cr MSeals:VitorProcess Connection:1/2"Transmitter Connection:DirectTransmitter Bolt Threads:M10Oval Flange Bolt Threads:M10

Clean liquids and gases compatible with the materials of manufacture. Vacuum to 160 BarG -40 to + 120 degC Depends upon transmitter 316 SS (see options) 316 SS Cr Mo alloy (630 SS optional) Viton & PTFE 1/2" NPT via oval flanges Direct mounting on 54mm centres M10 (7/16 UNF optional)

Integral Orifice

Transmitter mounted on integral orifice in pipeline

Designed for safe and easy installation, the Coulton Red 66 will measure very low liquid or gas flow rates in small bore pipes. It may be bolted directly to almost any manufacturers DP transmitter that uses standard 54mm centres.

The body is machined from a single-piece of 316 SS (or other material) to give high pressure integrity. Its unique design incorporates the "Coulton Slip-Ring" to hold the orifice section in place without the use of additional bolts or screws.

Six different sizes of orifice section can be fitted without using any special tools. It is impossible for the orifice section to move out of place without removal from the pipeline. This significantly increases safety over other designs.

The complete assembly is fixed into the pipeline using standard oval flanges for easy maintenance. If a very high accuracy is required then the unit can be fitted into a metered run and flow calibrated as a complete assembly.

CE Mark Approval

DS1196-R66		
DATE	21 Nov 1996	

EXPLANATION OF SYMBOLS				
Symbol	Denoting	Units		
$\begin{array}{c} Q_E \\ Q \\ \Delta P \\ P \\ T \\ \rho \\ \mu \end{array}$	Water equiv. flow rate @ 20°C Volumetric flow rate Differential pressure Absolute pressure Absolute temperature Density Viscosity	I/hr I/hr mmH ₂ 0 BarA K Kg/m ³ cStokes		
Subscript	Denoting			
F S	At flowing conditions At standard conditions (0 °C and 7	1.013 BarA)		

CHOOSING ORIFICE SIZE

Six sizes of orifice are available to cover a wide range of flow rates. The relationship $Q \propto \sqrt{\Delta P}$ will affect the overall cost. In order to choose the most suitable orifice size and hence range of flow transmitter, follow the simple steps described below.

Step1 Convert volumetric flow rate into an equivalent flow rate of water using one of the following formulae.

	_		
Fluid	Process Conditions	Equivalent Volumetric Flow of Water (20°C)	
Homogeneous Liquid	Any	$Q_E = Q_F \max \sqrt{\frac{\rho_F}{998.1}}$	
Gases & Steam	Flowing	$Q_{E} = Q_{F} \max \sqrt{\frac{\rho_{F}}{998.1}}$	
Gases	Standard (0°C, 1.013 Bar A)	$Q_{E} = Q_{S} \max \sqrt{\frac{\rho_{F}}{998.1} \frac{P_{S}}{P_{F}} \frac{T_{F}}{T_{S}}}$	
Step 2 Use the equivalent volumetric flow rate of			

- Step 2 Use the equivalent volumetric flow rate of water ($Q_{\rm g}$) in the graph on the opposite page to establish the most appropriate differential pressure and orifice size.
- Step 3a If a fixed DP range is required, for example 2500 mmH₂O. Use the table opposite to obtain the water equivalent full scale flow rate and then back-calculate the maximum flow rate of the fluid using the formula given in step 1.
- Step 3b If a fixed full scale flow rate is required, for example 50 SI/min. Use the water equivalent flow rate in one of the following formulae to calculate the transmitter full scale DP.

Orifice Size Number	Differential Pressure (mm H2O)
1	10 ^{2.0} (log ₁₀ Q _E)+1.689
2	10 ^{2.01} (log ₁₀ Q _E)+0.876
3	10 ^{2.013} (log ₁₀ Q _E) + 32 x 40 ³
4	10 ^{2.007} (log ₁₀ Q _E) - 1.174
5	10 ^{2.007} (log ₁₀ Q _E) - 2.026
6	10 ^{2.012} (log ₁₀ Q _E) - 3.00

Step 4 Check that the velocity of sound is not being exceeded. If $\frac{\Delta P}{P_F} > 1800$ then choose a larger size of orifice.

Orifice Size	Orifice Diameter (mm)	DP Range (mmH ₂ 0)	Water Equiv Flow Rate (I/min)	Air Equiv Flow Rate (SI/min)
1	0.635	5000 2500 1250 500 250	0.166 0.119 0.084 0.053 0.038	14.9 10.6 8.6 5.0 3.8
2	0.99	5000 2500 1250 500 250	0.423 0.300 0.212 0.135 0.095	38.9 27.7 18.8 12.8 9.6
3	1.587	5000 2500 1250 500 250	1.105 0.783 0.555 0.352 0.205	86.8 62.4 43.6 28.7 21.3
4	3.175	5000 2500 1250 500 250	4.465 3.161 2.238 1.418 1.004	351.1 254.2 167.2 120.5 89.2
5	5.150	5000 2500 1250 500 250	11.867 8.402 5.950 3.768 2.667	854.8 618.8 427.6 282.2 200.1
6	8.700	5000 2500 1250 500 250	35.592 25.220 17.870 11.333 8.030	2387.0 1752.0 1215.0 798.3 564.0

Equivalent Flow Rates For Fixed DP

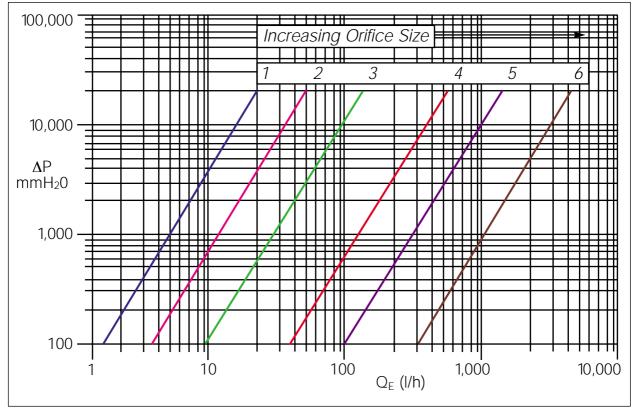
ACCURACY

Standard Unit without Calibration

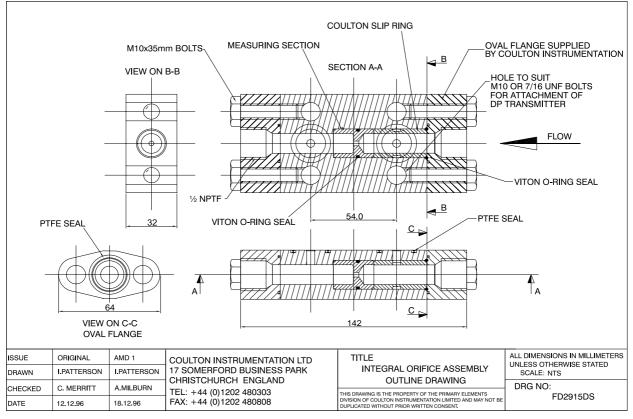
30 -100% Full Range	Better than $\pm 2\%$ of flow rate
10 - 30% Full Range	Better than $\pm 0.6\%$ of full range

In Metered Section with Flow Calibration

30 -100% Full Range	Better than $\pm 1\%$ of flow rate
10 - 30% Full Range	Better than $\pm 0.3\%$ of full range


To achieve these accuracies the integral orifice assembly must be installed in a straight section of pipe clear of upstream and downstream disturbances. As a rough guide, the upstream section should be 500mm long and the downstream 250mm long. The fluid must also be clean and the following ratio satisfied:

$$\frac{\mu_{S X Q_{S X}} \rho_{F}}{\mu_{F X Q_{S X}} \rho_{S}} \geq 1$$


If this ratio is less than 1, then the calibrated accuracy for rates above 30 percent of full flow rate will be reduced as shown in the table below:

Orifice Size:	1	2	3	4	5	6
Accuracy	Viscosity (cStokes)					
±1%	0 to 1	0 to 1	0 to 2	0 to 2	0 to 2	0 to 2
±2%	1 to 2	1 to 2	2 to 3	2 to 4	2 to 4	2 to 4
±5%	2 to 3	2 to 4	3 to 4	4 to 5	4 to 5	4 to 5

General arrangement drawing

DETAILS REQUIRED

The following information is required to size the integral orifice and manufacture the complete assembly. Please note that in many cases only part of this information may be necessary. If help is required please contact your local representative.

Tag No	Name of N	leasurement			
ORIFICE ASSE (Delete as appropr Orifice size (if kr Material of body Hastelloy C Seal material Material of bolts Transmitter bolt Depth of transm Transmitter press Process connec Special Require Material Cert Flow Calibration FLOW TRAN 2-wire 4-20m Smart comm Direct mounte OTHER ITEM 3-Valve manif Metered run Direct mounte	riate) nown) y & wetted parts thread hitter thread soure ports ction ments SMITTER A output unication rea cert 1S old ed flow indicator	1 2 3 4 316 SS Alloy 400 Viton & PTFE Viton only CrMo Alloy M10 13 mm 54 mm centres 1/2" NPT Oxygen cleaned NACE Yes / No Sq Rt Extraction Manuf Std Analogue Exia ExN	Monel PTFE only 630 SS 7/16 UNF	FLOW DETAILS Normal flow Maximum flow Meter scale required Max press loss permissible Required DP (if known) FLUID DETAILS Fluid to be measured Normal upstream pressure Maximum design pressure Normal upstream temp Maximum design temp Working density Working viscosity DOCUMENTATION Certificate of conformity General arrangement drawing Traceable flow calibration cert. Hydrostatic pressure test cert. BS EN 10204 3.1B Mat cert. NACE MR-01-75 Conf. cert.	

Signature	
Company	
Date	

Coulton Instrumentation Ltd

17 Somerford Business Park Christchurch, Dorset BH23 3RU, England Tel: +44 (0)1202 480303 Fax: +44 (0)1202 480808 Represented by